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Abstract

Coxiella burnetii, a Gram-negative intracellular bacterium, can give rise to Q fever in humans and 

is transmitted mainly by inhalation of infected aerosols from animal reservoirs. Serology is 

commonly used to diagnose Q fever, but the early cellular immune response –i.e. C. burnetii-

specific interferon(IFN)-γ production in response to antigen challenge– might be an additional 

diagnostic. Detection of IFN-γ responses has been used to identify past and chronic Q fever 

infections, but the IFN-γ response in acute Q fever has not been described. By challenging 

immunocompetent BALB/c mice with aerosols containing phase I C. burnetii, the timing and 

extent of IFN-γ recall responses was evaluated in an acute C. burnetii infection. Other cytokines 

were also measured in an effort to identify other potential diagnostic markers. The data show that 

after initial expansion of bacteria first in lungs and then in other tissues, the infection was cleared 

from day 10 onwards as reflected by the decreasing number of bacteria. The antigen-induced IFN-

γ production by splenocytes coincided with emergence of IgM phase II-antibodies at day 10 post-

infection, and preceded appearance of IgG-antibodies. This was accompanied by the production of 

pro-inflammatory cytokines including IL-6, KC and IP-10, followed by MCP-1, but not by IL-1β 

and TNF-α, and only very low production of the anti-inflammatory cytokine IL-10. These data 

suggest that analysis of antigen-specific IFN-γ responses could be a useful tool for diagnosis of 

acute Q-fever. Moreover, the current model of C.burnetii infection could be used to give new 

insights into immunological factors that predispose to development of persistent infection.
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1. Introduction

Infection with Coxiella burnetii, a Gram-negative intracellular bacterium, causes Q fever in 

humans. The common route of infection is through inhalation of C. burnetii-infected 

aerosols spread from animals, usually sheep or goats (1). Acute Q fever presents as a flu-like 

illness, but can be asymptomatic in over 50% of infections. A minority of cases presents as 

pneumonia or hepatitis (2). Generally, acute Q fever is self-limiting, yet early recognition 

and antibiotic treatment may shorten duration (3). In some cases, however, C. burnetii 

infection leads to a chronic infection (chronic Q fever), mostly Q fever endocarditis or 

vascular infection (4). These conditions are life-threatening if left untreated. Prevention of 

evolution from acute to chronic Q fever, by prolonged antibiotic treatment following initial 

infection, is suggested for risk groups, but the value of this intervention is debated (5, 6).

In the initial phase of the infection, cytokines and chemokines produced by monocytes and 

macrophages are central to recruit and activate other immune cells, promote pathogen 

disposal and develop adaptive immunity. Cell-mediated adaptive immune responses are 

essential for control of acute C. burnetii infection, probably even more important than B-cell 

responses (7–9). C. burnetii-specific T-cells produce interferon-γ (IFN-γ) and activate 

monocytes/macrophages to produce inflammatory cytokines and control intracellular C. 

burnetii growth (10, 11).

Currently, detection of acute Q fever infection in humans mainly relies on measurement C. 

burnetii-specific serum antibodies. Measurements of T-cell immune responses might be of 

additional value in acute Q fever, but so far have not been investigated in this context. To 

obtain data on early adaptive immune responses, human studies are of limited value, since 

patients are identified fairly late in the course of overt clinical disease. Animal models that 

mimic human acute Q fever can be used instead.

Animal models for Q fever usually include guinea pigs or mice (12). In mice, as in humans, 

C. burnetii infection can cause disease, with different mouse strains showing divergent 

vulnerability for infection, with mortality only in the most sensitive strains (13). The 

incubation time till development of symptoms depends on the inoculation dose (3), the route 

of infection and the phase of C. burnetii. The virulent form is the so-called phase I C. 

burnetii that possesses a full-length lipopolysaccharide (LPS) and is isolated from infected 

humans or animals (14). Phase II, obtained after several passages of phase I organisms in 

vitro, displays a truncated LPS molecule lacking the terminal O-antigen sugars (15), and 

does not lead to disease even when administered in high inocula in experimental animals (9, 

16, 17). The route of infection is of importance with a shorter incubation time in animals 

infected intraperitoneally as compared to the natural route of respiratory infection (18). 

Clearly, aerosol infection resembles most closely the natural route of infection in humans 

and should be preferred for studying the disease (19).

The main purpose of this study was to investigate the development of cellular immunity – 

i.e. C. burnetii-specific IFN-γ production in response to antigen challenge – and to compare 

this with the timing of IgM and IgG antibody responses against phase I and II bacteria. In 

addition, we investigated the specific production of early inflammatory mediators – a panel 
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of monocyte/macrophage-derived cytokines and chemokines – in an effort to identify other 

potential diagnostic markers. To facilitate analysis and mimic the mode of transmission for 

human acute Q fever most closely, we used a mouse model of aerosol infection with phase I 

C. burnetii in immunocompetent BALB/c mice.

2. Materials and methods

2.1 Animals

A total of 50 male BALB/c mice, 9 weeks of age, were purchased from The Jackson 

Laboratory (Bar Harbor, ME). This mouse strain is known to be intermediately sensitive to 

infection with C. burnetii (13, 19). Mice were housed in a Tecniplast Isocage system 

(Tecniplast, Exton, PA) in an ABSL3 facility, and given food and water ad libitum. The 

animal experiments were performed according to an animal protocol approved by the CDC 

Institutional Animal Care and Use Committee.

2.2 Bacteria

The strain used for this study was C. burnetii Nine Mile (NM) phase I (RSA493). This 

reference strain, isolated from a tick in 1935 (12), can cause Q fever in humans (3) and 

grows well in mouse models (14). It was grown in chicken eggs and purified by sucrose 

gradient centrifugation (20). Stocks were kept frozen at −80°C in sucrose phosphate 

glutamate buffer until use.

2.3 Mouse infections

On day 0, 40 mice were inoculated using the Biaera aerosol management platform (AeroMP, 

Biaera Technologies, Hagerstown, Maryland, USA). Ten milliliters of phosphate-buffered 

saline (PBS) containing NM phase I bacteria (at 10^8 organisms/mL) was placed in a 

nebulizer, and the aerosolized bacteria were introduced into the chamber containing the 40 

mice for a 10 minute exposure period. Sixty liters of air from the chamber were sampled in 

an impinger containing 10 mL PBS. Quantitative PCR detected 1.68 × 10^7 C. burnetii 

organisms in the impinger, suggesting that the air in the chamber contained 280 organisms 

per ml of air. Based on a tidal volume of 0.15 mL and a respiratory rate of 163/min for mice, 

it is estimated that each mouse inhaled 6.8 × 10^4 C. burnetii organisms. Ten mice served as 

a negative control group and were left uninfected. The infected and uninfected mice were 

maintained in separate HEPA-filtered isolator cages.

On day 1, 3, 7, 10 and 14, groups of 8 infected and 2 uninfected mice were euthanized by 

exsanguination under isoflurane anesthesia, after which the euthanasia was verified by 

cervical dislocation. Blood was harvested by cardiac puncture and collected in heparinized 

tubes and blood from pairs of mice was pooled. Lungs, spleen, and liver were aseptically 

removed. Spleens were weighed before further processing.

2.4 Quantitative PCR

For analysis of the quantity of C. burnetii DNA in blood and tissue, blood and spleens from 

the 8 infected and 2 uninfected mice at each time point were pooled into 5 pairs. Spleens 

were homogenized into single cell suspensions by grinding the tissues between frosted ends 

Schoffelen et al. Page 3

Diagn Microbiol Infect Dis. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of ground glass slides before pooling. For liver and lung, the organs from each mouse were 

tested independently. To quantify the C. burnetii, total genomic DNA was extracted from 

100 µL blood, lung/liver tissue, or spleen cell suspensions using the QIAamp DNA mini kit 

(Qiagen, Valencia, CA), according to the manufacturer’s instructions. On all these samples, 

quantitative PCR for IS1111a was performed as described (21).

2.5 Serology

Serum titers of IgM and IgG antibodies against phase I and II C. burnetii were determined 

by indirect immunofluorescence antibody test (IFA). Plasma was obtained from heparinized 

blood through centrifugation at 1,200 × g. Slides coated with either Nine Mile phase I (RSA 

493) or Nine Mile phase II (RSA 439) strains were incubated with titrations of plasma 

samples. After washing, they were treated with fluorescein isothiocyanate (FITC)-

conjugated goat anti-mouse antibody, and binding was visualized using a fluorescence 

microscope. The greatest dilution of plasma that resulted in unambiguous antibody binding 

is reported as titer.

2.6 Splenocyte stimulation

Splenocytes were isolated by homogenizing the spleens by grinding the tissue between the 

frosted ends of a pair of ground glass slides, creating single-cell suspensions in sterile PBS. 

Splenocytes from pairs of mice were pooled. After centrifugation at 300 × g for 10 minutes 

at 20°C, red blood cells were lysed by osmotic shock followed by resuspension in PBS. 

After passage through a 100 micron cell strainer to filter debris, cells were centrifuged again 

at 300 × g for 10 minutes at 20°C and resuspended in RPMI culture media supplemented as 

described. Cells were plated at 3×10^6 cells/well in a 24-well plate, in a final volume of 1 

mL per well.

Splenocytes were stimulated with either medium alone (negative control), the mitogen 

concanavalin A (conA) [2.5 µg/mL], or heat-killed (60 min, 80°C)(22) phase I NM at either 

[1×106/mL] or [1×107/mL]. After 48 hours incubation at 37°C and 5% CO2, 400 µl of 

splenocyte supernatant was collected from each well. Supernatants were stored at −80°C 

until cytokines were measured.

2.7 Cytokine analysis

Supernatant samples were gamma-irradiated (2 × 10^6 rads) before handling. Cytokine 

concentrations – including mouse interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, 

IL-10, keratinocyte-derived cytokine (KC), monocyte chemotactic protein (MCP)-1, 

interferon-γ induced protein (IP)-10, and interferon (IFN)-γ – were measured using a 

Luminex bead-based multiplex assay (R and D Systems, Minneapolis, MN, USA), in 

accordance with the manufacturers’ instructions. Samples were analyzed using a Bio-Plex 

Luminex 100 (Bio-Rad, Hercules, CA).

2.8 Statistical analysis

Data are expressed as mean ± SD (for weight and genome copies), or median ±IQR (for 

cytokine data). Differences between uninfected and infected mice at different time points 

after infection were tested using ANOVA test or Kruskal-Wallis as appropriate. GraphPad 
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Prism 5.0 software (GraphPad) was used. A difference was considered significant if the P 

value was ≤ 0.05.

3. Results

3.1 C. burnetii infection in mice

All infected mice showed some signs of lethargy and ruffled fur for 2–7 days, with onset 

between day 7 and day 14 post infection. Infected mice developed splenomegaly from day 3 

onwards (Figure 1). None of the mice died before being sacrificed.

3.2 Detection of C. burnetii DNA

The bacterial DNA copy numbers in the lungs of infected mice increased from day 1 to day 

7, and declined thereafter. In plasma, amplification products were obtained at day 3 (only in 

one of four pairs of mice) and reached maximum at day 7 (all pairs of mice). In liver and 

spleen, C. burnetii DNA was detected at day 7 and reached maximum at day 10 after which 

it declined (Figure 2). At day 14, of the tissues examined, spleens contained the highest load 

of C. burnetii DNA. No bacterial DNA was detected in plasma and tissue of uninfected 

mice.

3.3 Serological response

Serological responses, as measured by IFA, are shown in Figure 3. A positive response in 

infected mice was first detectable at day 10, with low titers (ranging from 1:32 to 1:64) for 

IgM phase II. These titers increased to 1:256 to 1:2048 at day 14. IgG phase II and IgM 

phase I were also positive in all infected mice (range 1:256 to 1:512 and range 1:64 to 1:256, 

respectively). At day 14, all infected mice had developed antibodies against Nine Mile phase 

I and II C. burnetii, and all control mice remained seronegative. IgG against phase I was 

only low-positive in two of four mouse pairs (maximum 1:32) at day 14.

3.4 Cytokine production

Cytokines were measured in supernatants of splenocytes stimulated for 48 hours in vitro. 

Splenocytes of infected mice produced substantial amounts of cytokines, with different 

stimulus-dependent, time post-infection patterns. The pattern of antigen-induced IFN-γ 

production, reflecting a specific cell-mediated immune response, was of special interest 

(Figure 4). ConA-induced IFN-γ production was similarly high in uninfected and infected 

mice. Unstimulated splenocytes produced some IFN-γ at day 10. NM-induced IFN-γ 

production, absent in all uninfected mice and in infected mice at day 1,3 and 7, was 

significantly increased at day 10 and 14 post-infection.

Regarding the other cytokines, NM stimulation induced significant IL-6, KC and IP-10 from 

day 10 onwards, while MCP-1 production and low levels of IL-10 were observed on day 14 

(Figure 5). In addition, conA stimulated splenocytes showed significantly increased IL-6 and 

IP-10 production at day 14. Unstimulated splenocytes produced IL-6 at day 10, but 

otherwise no substantial amounts of any other cytokines at any timepoint. IL-1β and TNF-α 

production were below detection limits at all time points with all stimuli. Supplementary 

table 1 contains all data on all the cytokines measured.
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4. Discussion

In the present study, we observed effective early immune responses in immunocompetent 

BALB/c mice infected with C. burnetii via the aerosol route. After initial expansion of 

bacteria in lungs and spread to other tissues, the infection was cleared from day 10 onwards 

as reflected by the decreasing number of bacterial DNA copies. Antigen-induced IFN-γ 

production by splenocytes, indicating a cell-mediated immune response, coincided with 

emergence of IgM phase II antibodies at day 10 post-infection. This was accompanied by 

the production of pro-inflammatory cytokines including IL-6, KC and IP-10, followed by 

MCP-1, but not by IL-1β and TNF-α, and only very low production of the anti-inflammatory 

cytokine IL-10.

Previous studies in humans have looked at the in vitro IFN-γ response in people vaccinated 

against Q fever, people that have had a previous Q fever infection, and chronic Q fever 

patients (23–28). However, the testing of in vitro IFN-γ responses in acute human Q fever 

has not been reported. Acute cytokine responses in mice have been studied previously. This 

has been done by infecting mice by either an intraperitoneal or intratracheal route and then 

measuring circulating cytokines in serum at single time points (14). These studies have 

detected IFN-γ and other cytokines in mouse serum, but have not looked at in vitro antigen 

specific recall responses at different time points. Another study looked at some early time 

points and detected modest increases in IFN-γ recall responses after infection of mice by 

intraperitoneal or intravenous routes (29). The study reported here describes in vitro antigen 

specific recall cytokine responses at multiple time points shortly after C. burnetii aerosol 

infection. The data show a very robust antigen specific IFN-γ response that is detected at 

about the same time as antibody responses relative to infection and perhaps just prior to 

detection of C. burnetii-specific IgG. Based these observations, specific IFN-γ production 

assays are worthwhile to investigate for detection of human acute Q fever.

The aerosol infection route that was used in this study closely reflects the typical acquisition 

of human infection by inhalation. After an inoculum of 6.8 × 10^4 bacteria, the number of 

C. burnetii DNA copies first increased in the lungs, after which the bacteria became 

detectable in plasma, with subsequent spread to the spleen and liver.

After the initial expansion, bacterial numbers declined. Since we aimed to observe the very 

early immune response, later time points were not studied. A previous study of intratracheal 

infection with C. burnetii in BALB/c mice that continued to 24 days post-infection, also 

showed clearance of infection (8). In that study, the genome copy numbers in the lungs 

sharply decreased between day 9 and 16, similarly to our observations. Moreover, the spleen 

weight peaked at day 16 post-infection, but had decreased by day 24, another indication that 

infection was controlled.

The time-response curves of the humoral immune response suggest that IgG antibodies are 

redundant for early clearance of C. burnetii. Due to the absence of cellular IgM-receptors, 

IgM by itself – in contrast to IgG – is unable to influence cellular responses. In our model, 

IgG, against either phase I or phase II bacteria, became detectable only at day 14, whereas 

the clearance of bacteria from the lungs started between day 7 and 10. The decrease in 
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bacterial DNA occurred, however, simultaneously with the increase of specific IFN-γ 

production by splenocytes.

A limitation of present study is that the results of cytokine production upon stimulation with 

recall antigens were obtained in splenocytes instead of peripheral blood cells, which would 

likely be used for testing in humans. Although there is not a specific reason to believe that 

IFN-γ production by peripheral blood cells would be completely different from splenocytes, 

there could be kinetic differences. In present study, stimulation of mouse whole blood in 

vitro was performed, but cytokine responses were difficult to detect due to technical 

limitations of whole blood stimulations in mice. IFN-γ could not be detected, while IP-10 

was detectable only in low levels showing maximum levels at day 10 (not shown). Previous 

studies looking at past infection or vaccination against Q fever have found that human 

peripheral blood is a good source of cytokine producing cells in response to C. burnetii 

antigen stimulation (25, 26).

In addition to IFN-γ, we observed the production of IL-6, KC, MCP-1 and IP-10 in C. 

burnetii stimulated splenocytes at day 10 and 14 after infection. These cytokines probably 

play an important role in the cell infiltration in C. burnetii-infected tissues of 

immunocompetent BALB/c mice, which was observed by Read et al (8). The increased 

production of IL-6 has been described in the course of human acute Q fever, in which 

unstimulated peripheral blood cells showed increased production of pro-inflammatory 

cytokines including IL-6, TNF-α, IL-12 and the anti-inflammatory cytokine IL-10 (30). 

However, IL-6 production by C. burnetii-stimulated blood cells was not increased in acute Q 

fever patients. Likewise, MCP-1 was found to be increased in unstimulated blood cells of 

acute Q fever patients, but not in C. burnetii-stimulated cells (31). These human patients 

were, however, in a later stage of the infection than the mice in the current study.

To our knowledge, IP-10 has not been studied in the context of C. burnetii infections before. 

IP-10 is a chemokine produced by monocytes/macrophages, mainly in response to IFN-γ but 

also other cytokines including type I interferons, IL-2, IL-23 and IL-17. IP-10 has shown a 

promising role as an additional marker of M. tuberculosis infection (32), being specifically 

induced by TB-specific antigens in confirmed TB-cases and not in healthy controls. These 

data from human patients infected with an obligate intracellular pathogen are in line with 

our observations in mice infected with C. burnetii. However, Ruhwald et al. (28) showed 

that IP-10 levels after antigen stimulation are higher compared with IFN-γ levels in human 

peripheral blood. In our study, we found that IP-10 was induced in antigen-stimulated 

splenocytes, but levels of IP-10 (1400 pg/mL) were lower than levels of IFN-γ (5000 pg/

mL).

Previous studies have shown absent IL-1β production, but substantial TNF-α production by 

C. burnetii-stimulated peritoneal macrophages of uninfected BALB/c mice (33). Other 

studies showed increased TNF-α production by peritoneal macrophages of C. burnetii-

infected BALB/c mice (29). In our model, using the respiratory infection route, we were 

unable to induce substantial IL-1β and TNF-α production in stimulated spleen cells of 

infected mice. The lack of TNF-α response in our system could be due to the route of 

infection used, the cell types present in our spleen preparations, or to the antigen used.
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Of note, only minimal levels of IL-10 were produced by splenocytes after C. burnetii 

infection. IL-10 has been of special interest in previous studies, since it was linked to 

persistent infection in humans (30, 34) and chronic Q fever in mice overexpressing IL-10 

(35). Our findings show that clearance of C. burnetii in the early stage is accompanied by 

only a very low antigen-specific IL-10 production by splenocytes. Earlier studies in 

intraperitoneally C. burnetii-infected BALB/c mice, showed high levels of IL-10 production 

by C. burnetii-stimulated peritoneal macrophages at day 7 post-infection, before bacterial 

load decreased (29). Similar to TNFα, macrophages may be an important source of IL-10 in 

response to C. burnetii, although it is likely that regulatory T-cells and Th2 lymphocytes 

also play a role.

In conclusion, the model of C. burnetii infection used in this study demonstrates that 

detection of antigen-induced IFN-γ could be used to detect acute C. burnetii infection in 

mice, and this is likely to be the case in humans as well. Antigen-specific production of IFN-

γ and IP-10 were both detectable prior to elevation of specific IgG antibodies. This study 

also showed antigen-specific induction of IL-6, KC and MCP-1 from splenocyte cultures. If 

applied to immune-deficient mice, or mice with anatomical risk factors for endocarditis or 

vascular infections, the model may offer wide opportunities to study the pathophysiological 

and immune derangements that occur during progression from acute to chronic Q fever.
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Figure 1. Spleen weight after aerosol infection with C. burnetii in immunocompetent BALB/c 
mice
(A) Spleen-to-body weight (mean ± SD) is shown for 10 uninfected mice (t=0) and 8 

infected mice per time point post-infection. ANOVA test followed by Dunn’s multiple 

comparison test was used to compare infected mice at different time points with uninfected 

mice. **, P<0.01; ***, P<0.001.
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Figure 2. Number of C. burnetii DNA copies in lung, plasma, liver and spleen after aerosol 
infection with C. burnetii in immunocompetent BALB/c mice
The mean ± SD numbers of genomic equivalents per gram of tissue or ml of plasma are 

shown of 8 infected mice per time point. Uninfected mice were negative at every time point 

in all tissues. Samples that were negative were assigned a value of 200 genomic equivalents 

per g (or ml). This is the limit of detection of the assay. P values were calculated by one-

sample t-test with a hypothetical value of 0. * P<0.05, ** P<0.01, *** P<0.001.
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Figure 3. Antibody responses to C. burnetii after aerosol infection with C. burnetii in 
immunocompetent BALB/c mice
IgM and IgG titers to Nine Mile phase I and phase II were measured in plasma by indirect 

immunofluorescence assay (IFA). The median ± range reciprocal titers are shown of four 

pairs of infected mice per time point. The control mice were seronegative at every time point 

(not shown). Negative results in the IFA were assigned a value 1:8.
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Figure 4. Early IFN-γ production by stimulated splenocytes of C. burnetii-infected 
immunocompetent BALB/c mice
Splenocytes were stimulated for 48h with either conA [2.5 µg/mL], NM phase I [10^7/mL], 

NM phase I [10^6/mL], or left unstimulated (nil). The median ± IQR cytokine production is 

shown per time point of four pairs of infected mice. T=0 shows the median ± IQR of five 

pairs of uninfected mice. P values were calculated by Kruskal-Wallis test followed by 

Dunn’s multiple comparison test comparing cytokine concentrations of infected mice at 

different time points with uninfected mice. * P<0.05, ** P<0.01, *** P<0.001.

Abbreviations: conA, concanavalin A; NMI, C. burnetii Nine Mile phase I.
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Figure 5. Early IL-6, KC, MCP-1, IP-10 and IL-10 production by stimulated splenocytes of C. 
burnetii-infected immunocompetent BALB/c mice
Splenocytes were stimulated for 48h with either conA [2.5 µg/mL], NM phase I [10^7/mL] 

or [10^6/mL], or left unstimulated (nil). The median ± IQR cytokine production is shown 

per time point of four pairs of infected mice. T=0 shows the median ± IQR of five pairs of 

uninfected mice. IL-1β and TNF-α production were below the lowest detection limit at all 

time points for all stimulations (not shown).The dashed horizontal line represents the lowest 

standard in the Luminex assay, values below are extrapolated. P values were calculated by 
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Kruskal-Wallis test followed by Dunn’s multiple comparison test comparing cytokine 

concentrations of infected mice at different time points with uninfected mice. * P<0.05, ** 

P<0.01.

Abbreviations: conA, concanavalin A; NMI, C. burnetii Nine Mile phase I.
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